Crunching the numbers: U of T leads multidisciplinary team studying King Street pilot project

Research team brings together experts in air and noise pollution, transportation and public health from U of T and Ryerson
King Street streetcar
A section of King Street has restricted car traffic as part of the pilot project, and U of T researchers are collaborating with the City of Toronto and the Toronto Transit Commission to study the pilot project’s effects (photo by Billy Cabic via Flickr)

Toronto’s King Street transit pilot aims to improve transit reliability, speed and capacity, along with a number of other measures included in an evaluation and monitoring program.

For a team of U of T researchers, it also presents an ideal opportunity to study the effects – both direct and indirect – of traffic changes on air and noise pollution, public health and commuter decision-making. 

The pilot project, launched in November 2017 and running for one year, involves altering traffic patterns on the stretch of King Street, from Bathurst Street in the west to Jarvis Street in the east, to prioritize through-traffic from streetcars, cyclists and pedestrians. Cars must take their first available right turn off the street, with through movements prohibited at eight of the 12 intersections with traffic signals.

The 504 King streetcar route is the busiest surface transit route in the city.

“There isn’t another city that’s done exactly what we’ve done, though other cities have taken measures to prioritize transit or restrict private vehicle traffic,” says David Kuperman, manager of surface transit projects for the City of Toronto. “It’s early days, but we are hearing some interest from other cities in what we’re doing because we have such a comprehensive data monitoring and evaluation program planned.”

The multidisciplinary team led by researchers in U of T's Faculty of Applied Science & Engineering is collaborating with both the City of Toronto and the Toronto Transit Commission (TTC) to gather data and share their findings and analysis. The team began taking measurements along King Street and surrounding area as early as summer 2017 to set a baseline before the launch of the pilot.

“It’s a very interesting natural experiment,” says Civil Engineering Professor Marianne Hatzopoulou. “There are very few opportunities to conduct transportation and environmental research in a live natural laboratory like this.”

Hatzopoulou’s research investigates relationships between air quality and transportation patterns. For this project, she is using a technique called “scripted exposure studies” to measure and compare the air pollution exposure of people travelling along King Street and nearby areas, both before and after implementation of the pilot project.

“The idea is to replicate what an individual passing along or close to King Street would be exposed to, including all sorts of modes: cycling, walking, riding the streetcar, sitting in a coffee shop,” she says. “We designed four different routes involving both indoors and outdoors, along King and parallel streets, as well as cross streets.”

Her team will be carrying portable exposure monitors that measure traffic-related air pollution such as small inhalable particles and soot. They’ll also be carrying GPS units and will merge location data with exposure measurements, resulting in a detailed pollution exposure map for King Street and surrounding areas.

Cheol-Heon Jeong and Peter Murphy of the Southern Ontario Centre for Atmospheric Aerosol Research (SOCAAR) at U of T Engineering have also installed several stationary AirSENCE™ devices throughout the pilot project area, as well as air quality monitors on two TTC streetcars dedicated exclusively to King Street routes for the duration of the project. These devices measure ozone, carbon monoxide, carbon dioxide, ultrafine particles, black carbon and PM 2.5, a standard for quantifying particulate matter.

The research team also includes Tor Oiamo, an assistant professor of geography & environmental studies at Ryerson University who is studying changes to noise levels, and Jeffrey Brook, an assistant professor in U of T’s Dalla Lana School of Public Health who is a senior research scientist with Environment and Climate Change Canada.

“This project is very exciting from a public health perspective because we have the opportunity to collect a wealth of data on how an alteration to urban design affects health and behaviour,” says Brook. “The knock-on effects due to changes in people’s behaviour could be significant, affecting not only transport and the physical environment, but people’s levels of exercise, stress, wellness and happiness, all of which have potential health benefits.”

In December, the researchers met with representatives from the City of Toronto’s Transportation Services and Public Health teams to discuss coordinated data collection, information sharing, survey design and next steps.

“When a city makes a change like this, the primary goal is to improve travel times,” says Hatzopoulou. “But there are so many co-benefits that can come with that, and if we’re able to highlight those improvements to air quality and noise reduction, we’re telling decision-makers that there’s more value to unlock with these projects beyond just traffic circulation, and that’s very important.”

Read about other U of T research on the pilot project

The Bulletin Brief logo

Subscribe to The Bulletin Brief

Engineering